Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2477, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120434

RESUMO

Cellular decision making often builds on ultrasensitive MAPK pathways. The phosphorylation mechanism of MAP kinase has so far been described as either distributive or processive, with distributive mechanisms generating ultrasensitivity in theoretical analyses. However, the in vivo mechanism of MAP kinase phosphorylation and its activation dynamics remain unclear. Here, we characterize the regulation of the MAP kinase Hog1 in Saccharomyces cerevisiae via topologically different ODE models, parameterized on multimodal activation data. Interestingly, our best fitting model switches between distributive and processive phosphorylation behavior regulated via a positive feedback loop composed of an affinity and a catalytic component targeting the MAP kinase-kinase Pbs2. Indeed, we show that Hog1 directly phosphorylates Pbs2 on serine 248 (S248), that cells expressing a non-phosphorylatable (S248A) or phosphomimetic (S248E) mutant show behavior that is consistent with simulations of disrupted or constitutively active affinity feedback and that Pbs2-S248E shows significantly increased affinity to Hog1 in vitro. Simulations further suggest that this mixed Hog1 activation mechanism is required for full sensitivity to stimuli and to ensure robustness to different perturbations.


Assuntos
Proteínas de Saccharomyces cerevisiae , Fosforilação , Retroalimentação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Mol Syst Biol ; 19(4): e11024, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36896621

RESUMO

While several computational methods have been developed to predict the functional relevance of phosphorylation sites, experimental analysis of the interdependency between protein phosphorylation and Protein-Protein Interactions (PPIs) remains challenging. Here, we describe an experimental strategy to establish interdependencies between protein phosphorylation and complex formation. This strategy is based on three main steps: (i) systematically charting the phosphorylation landscape of a target protein; (ii) assigning distinct proteoforms of the target protein to different protein complexes by native complex separation (AP-BNPAGE) and protein correlation profiling; and (iii) analyzing proteoforms and complexes in cells lacking regulators of the target protein. We applied this strategy to YAP1, a transcriptional co-activator for the control of organ size and tissue homeostasis that is highly phosphorylated and among the most connected proteins in human cells. We identified multiple YAP1 phosphosites associated with distinct complexes and inferred how both are controlled by Hippo pathway members. We detected a PTPN14/LATS1/YAP1 complex and suggest a model how PTPN14 inhibits YAP1 via augmenting WW domain-dependent complex formation and phosphorylation by LATS1/2.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transdução de Sinais , Humanos , Fosforilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Sinalização YAP , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo
3.
Cell Cycle ; 19(14): 1707-1715, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32552303

RESUMO

Budding yeast, Saccharomyces cerevisiae, has been widely used as a model system to study cellular signaling in response to internal and external cues. Yeast was among the first organisms in which the architecture, feedback mechanisms and physiological responses of various MAP kinase signaling cascades were studied in detail. Although these MAP kinase pathways are activated by different signals and elicit diverse cellular responses, such as adaptation to stress and mating, they function as an interconnected signaling network, as they influence each other and, in some cases, even share components. Indeed, various stress signaling pathways interfere with pheromone signaling that triggers a distinct cellular differentiation program. However, the molecular mechanisms responsible for this crosstalk are still poorly understood. Here, we review the general topology of the yeast MAP kinase signaling network and highlight recent and new data revealing how conflicting intrinsic and extrinsic signals are interpreted to orchestrate appropriate cellular responses.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Feromônios/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Transdução de Sinais , Fatores de Tempo
4.
J Cell Biol ; 218(9): 3117-3133, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31315942

RESUMO

Cells continuously adapt cellular processes by integrating external and internal signals. In yeast, multiple stress signals regulate pheromone signaling to prevent mating under unfavorable conditions. However, the underlying crosstalk mechanisms remain poorly understood. Here, we show that mechanical stress activates Pkc1, which prevents lysis of pheromone-treated cells by inhibiting polarized growth. In vitro Pkc1 phosphorylates conserved residues within the RING-H2 domains of the scaffold proteins Far1 and Ste5, which are also phosphorylated in vivo. Interestingly, Pkc1 triggers dispersal of Ste5 from mating projections upon mechanically induced stress and during cell-cell fusion, leading to inhibition of the MAPK Fus3. Indeed, RING phosphorylation interferes with Ste5 membrane association by preventing binding to the receptor-linked Gßγ protein. Cells expressing nonphosphorylatable Ste5 undergo increased lysis upon mechanical stress and exhibit defects in cell-cell fusion during mating, which is exacerbated by simultaneous expression of nonphosphorylatable Far1. These results uncover a mechanical stress-triggered crosstalk mechanism modulating pheromone signaling, polarized growth, and cell-cell fusion during mating.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Quinase C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Estresse Mecânico , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/genética , Proteína Quinase C/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Proc Natl Acad Sci U S A ; 114(51): 13471-13476, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29196524

RESUMO

Cells experience compressive stress while growing in limited space or migrating through narrow constrictions. To survive such stress, cells reprogram their intracellular organization to acquire appropriate mechanical properties. However, the mechanosensors and downstream signaling networks mediating these changes remain largely unknown. Here, we have established a microfluidic platform to specifically trigger compressive stress, and to quantitatively monitor single-cell responses of budding yeast in situ. We found that yeast senses compressive stress via the cell surface protein Mid2 and the calcium channel proteins Mid1 and Cch1, which then activate the Pkc1/Mpk1 MAP kinase pathway and calcium signaling, respectively. Genetic analysis revealed that these pathways work in parallel to mediate cell survival. Mid2 contains a short intracellular tail and a serine-threonine-rich extracellular domain with spring-like properties, and both domains are required for mechanosignaling. Mid2-dependent spatial activation of the Pkc1/Mpk1 pathway depolarizes the actin cytoskeleton in budding or shmooing cells, thereby antagonizing polarized growth to protect cells under compressive stress conditions. Together, these results identify a conserved signaling network responding to compressive mechanical stress, which, in higher eukaryotes, may ensure cell survival in confined environments.


Assuntos
Calcineurina/metabolismo , Canais de Cálcio/metabolismo , Proteína Quinase C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Mecânico , Citoesqueleto de Actina/metabolismo , Calcineurina/genética , Canais de Cálcio/genética , Sinalização do Cálcio , Sobrevivência Celular , Parede Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Mecanotransdução Celular , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microfluídica/instrumentação , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Quinase C/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
Mol Syst Biol ; 10: 767, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25492886

RESUMO

Cells respond to environmental stimuli via specialized signaling pathways. Concurrent stimuli trigger multiple pathways that integrate information, predominantly via protein phosphorylation. Budding yeast responds to NaCl and pheromone via two mitogen-activated protein kinase cascades, the high osmolarity, and the mating pathways, respectively. To investigate signal integration between these pathways, we quantified the time-resolved phosphorylation site dynamics after pathway co-stimulation. Using shotgun mass spectrometry, we quantified 2,536 phosphopeptides across 36 conditions. Our data indicate that NaCl and pheromone affect phosphorylation events within both pathways, which thus affect each other at more levels than anticipated, allowing for information exchange and signal integration. We observed a pheromone-induced down-regulation of Hog1 phosphorylation due to Gpd1, Ste20, Ptp2, Pbs2, and Ptc1. Distinct Ste20 and Pbs2 phosphosites responded differently to the two stimuli, suggesting these proteins as key mediators of the information exchange. A set of logic models was then used to assess the role of measured phosphopeptides in the crosstalk. Our results show that the integration of the response to different stimuli requires complex interconnections between signaling pathways.


Assuntos
Feromônios/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Transdução de Sinais , Regulação para Baixo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Teóricos , Concentração Osmolar , Fosforilação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cloreto de Sódio/metabolismo
7.
Angew Chem Int Ed Engl ; 53(5): 1320-3, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24356903

RESUMO

Ste5 is a scaffold protein that controls the pheromone response of the MAP-kinase cascade in yeast cells. Upon pheromone stimulation, Ste5 (through its RING-H2 domain) interacts with the ß and γ subunits of an activated heterodimeric G protein and promotes activation of the MAP-kinase cascade. With structural and biophysical studies, we show that the Ste5 RING-H2 domain exists as a molten globule under native buffer conditions, in yeast extracts, and even in denaturing conditions containing urea (7 M). Furthermore, it exhibits high thermal stability in native conditions. Binding of the Ste5 RING-H2 domain to the physiological Gß/γ (Ste4/Ste18) ligand is accompanied by a conformational transition into a better folded, more globular structure. This study reveals novel insights into the folding mechanism and recruitment of binding partners by the Ste5 RING-H2 domain. We speculate that many RING domains may share a similar mechanism of substrate recognition and molten-globule-like character.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Mercaptoetanol/química , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cloreto de Sódio/química , Temperatura , Ureia/química
8.
Mol Cell Biol ; 33(1): 85-97, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23109421

RESUMO

Cyclin E1, an activator of cyclin-dependent kinase 2 (Cdk2) that promotes replicative functions, is normally expressed periodically within the mammalian cell cycle, peaking at the G(1)-S-phase transition. This periodicity is achieved by E2F-dependent transcription in late G(1) and early S phases and by ubiquitin-mediated proteolysis. The ubiquitin ligase that targets phosphorylated cyclin E is SCF(Fbw7) (also known as SCF(Cdc4)), a member of the cullin ring ligase (CRL) family. Fbw7, a substrate adaptor subunit, is expressed as three splice-variant isoforms with different subcellular distributions: Fbw7α is nucleoplasmic but excluded from the nucleolus, Fbw7ß is cytoplasmic, and Fbw7γ is nucleolar. Degradation of cyclin E in vivo requires SCF complexes containing Fbw7α and Fbw7γ, respectively. In vitro reconstitution showed that the role of SCF(Fbw7α) in cyclin E degradation, rather than ubiquitylation, is to serve as a cofactor of the prolyl cis-trans isomerase Pin1 in the isomerization of a noncanonical proline-proline bond in the cyclin E phosphodegron. This isomerization is required for subsequent binding and ubiquitylation by SCF(Fbw7γ). Here we show that Pin1-mediated isomerization of the cyclin E phosphodegron and subsequent binding to Fbw7γ drive nucleolar localization of cyclin E, where it is ubiquitylated by SCF(Fbw7γ) prior to its degradation by the proteasome. It is possible that this constitutes a mechanism for rapid inactivation of phosphorylated cyclin E by nucleolar sequestration prior to its multiubiquitylation and degradation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/metabolismo , Ciclina E/metabolismo , Proteínas F-Box/metabolismo , Proteínas Oncogênicas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Ciclina E/genética , Proteínas F-Box/genética , Proteína 7 com Repetições F-Box-WD , Fibroblastos/metabolismo , Células HEK293 , Humanos , Camundongos , Peptidilprolil Isomerase de Interação com NIMA , Nucleoplasminas/metabolismo , Proteínas Oncogênicas/genética , Peptidilprolil Isomerase/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Fase S , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
9.
Integr Biol (Camb) ; 4(10): 1274-82, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22976484

RESUMO

Microscopy can provide invaluable information about biological processes at the single cell level. It remains a challenge, however, to extract quantitative information from these types of datasets. We have developed an image analysis platform named YeastQuant to simplify data extraction by offering an integrated method to turn time-lapse movies into single cell measurements. This platform is based on a database with a graphical user interface where the users can describe their experiments. The database is connected to the engineering software Matlab, which allows extracting the desired information by automatically segmenting and quantifying the microscopy images. We implemented three different segmentation methods that recognize individual cells under different conditions, and integrated image analysis protocols that allow measuring and analyzing distinct cellular readouts. To illustrate the power and versatility of YeastQuant, we investigated dynamic signal transduction processes in yeast. First, we quantified the expression of fluorescent reporters induced by osmotic stress to study noise in gene expression. Second, we analyzed the dynamic relocation of endogenous proteins from the cytoplasm to the cell nucleus, which provides a fast measure of pathway activity. These examples demonstrate that YeastQuant provides a versatile and expandable database and an experimental framework that improves image analysis and quantification of diverse microscopy-based readouts. Such dynamic single cell measurements are highly needed to establish mathematical models of signal transduction pathways.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Transdução de Sinais , Núcleo Celular/metabolismo , Biologia Computacional/métodos , Fungos/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Modelos Teóricos , Software , Fatores de Tempo
10.
Cell Cycle ; 7(8): 1075-82, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18414042

RESUMO

The ubiquitin-mediated turnover of cyclin E is regulated by phosphorylation and the activity of the ubiquitin ligase SCF(Cdc4) (also known as SCF(Fbw7)). In 293A cells, SCF complexes containing two different Cdc4 isoforms, alpha and gamma, are required for efficient cyclin E ubiquitylation. Whereas SCF(Cdc4gamma) ubiquitylates cyclin E directly, SCF(Cdc4alpha) serves as a cofactor for Pin1-mediated prolyl isomerization of the cyclin E phosphodegron, essential to potentiate ubiquitylation. In the current study, we show that the requirement for both Cdc4alpha and gamma is general, except in cell lines where cyclin E is expressed at an elevated level. Under these circumstances, Cdc4alpha is sufficient for cyclin E turnover. Furthermore, the requirement for Cdc4gamma can be bypassed by ectopic overexpression of cyclin E.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclina E/metabolismo , Proteínas F-Box/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , Primers do DNA/genética , Proteína 7 com Repetições F-Box-WD , Imunofluorescência , Humanos , Fosforilação , Isoformas de Proteínas/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
EMBO J ; 26(21): 4501-13, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17914457

RESUMO

Site-specific activation of the Rho-type GTPase Cdc42p is critical for the establishment of cell polarity. Here we investigated the role and regulation of the GTPase-activating enzymes (GAPs) Bem2p and Bem3p for Cdc42p activation and actin polarization at bud emergence in Saccharomyces cerevisiae. Bem2p and Bem3p are localized throughout the cytoplasm and the cell cortex in unbudded G1 cells, but accumulate at sites of polarization after bud emergence. Inactivation of Bem2p results in hyperactivation of Cdc42p and polarization toward multiple sites. Bem2p and Bem3p are hyperphosphorylated at bud emergence most likely by the Cdc28p-Cln2p kinase. This phosphorylation appears to inhibit their GAP activity in vivo, as non-phosphorylatable Bem3p mutants are hyperactive and interfere with Cdc42p activation. Taken together, our results indicate that Bem2p and Bem3p may function as global inhibitors of Cdc42p activation during G1, and their inactivation by the Cdc28p/Cln kinase contributes to site-specific activation of Cdc42p at bud emergence.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Citoplasma/metabolismo , Fase G1 , Fosforilação , Estrutura Terciária de Proteína , Técnicas do Sistema de Duplo-Híbrido
12.
Mol Cell ; 23(1): 37-48, 2006 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16818231

RESUMO

Cyclin E, an activator of cyclin-dependent kinase 2 (Cdk2), is targeted for proteasomal degradation by phosphorylation-dependent multiubiquitylation via the ubiquitin ligase SCF(hCdc4). SCF ubiquitin ligases are composed of a core of conserved subunits and one variable subunit (an F box protein) involved in substrate recognition. We show here that multiubiquitylation of cyclin E requires the sequential function of two distinct splice variant isoforms of the F box protein hCdc4 known as alpha and gamma. SCF(hCdc4alpha) binds a complex containing cyclin E, Cdk2, and the prolyl cis/trans isomerase Pin1 and promotes the activity of Pin1 without directly ubiquitylating cyclin E. However, due to the action of this SCF(hCdc4alpha)-Pin1 complex, cyclin E becomes an efficient ubiquitylation substrate of SCF(hCdc4gamma). Furthermore, in the context of Cdc4alpha and cyclin E, mutational data suggest that Pin1 isomerizes a noncanonical proline-proline bond, with the possibility that Cdc4alpha may serve as a cofactor for altering the specificity of Pin1.


Assuntos
Proteínas de Ciclo Celular/classificação , Proteínas de Ciclo Celular/fisiologia , Ciclina E/metabolismo , Proteínas F-Box/classificação , Proteínas F-Box/fisiologia , Isoenzimas/classificação , Proteínas Ligases SKP Culina F-Box/fisiologia , Ubiquitina-Proteína Ligases/classificação , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitina/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proteínas F-Box/genética , Proteína 7 com Repetições F-Box-WD , Inativação Gênica/fisiologia , Humanos , Isoenzimas/fisiologia , Modelos Biológicos , Mutação , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/fisiologia , Ubiquitina-Proteína Ligases/genética
13.
Methods Mol Biol ; 284: 287-306, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15173624

RESUMO

Green fluorescent proteins (GFPs) are widely used tools to visualize proteins and study their intracellular distribution. One feature of working with GFP variants, photobleaching, has recently been combined with an older technique known as fluorescence recovery after photobleaching (FRAP) to study protein kinetics in vivo. During photobleaching, fluorochromes get destroyed irreversibly by repeated excitation with an intensive light source. When the photobleaching is applied to a restricted area or structure, recovery of fluorescence will be the result of active or passive diffusion from fluorescent molecules from unbleached surrounding areas. Fluorescence loss in photobleaching (FLIP) is a variant of FRAP where an area is bleached, and loss of fluorescence in surrounding areas is observed. FLIP can be used to study the dynamics of different pools of a protein or can show how a protein diffuses, or is transported through a cell or cellular structure. Here, we discuss these photobleaching fluorescent imaging techniques, illustrated with examples of these techniques applied to proteins of the Saccharomyces cerevisiae pheromone response MAPK pathway.


Assuntos
Recuperação de Fluorescência Após Fotodegradação/métodos , Sistema de Sinalização das MAP Quinases , Proteínas de Saccharomyces cerevisiae/metabolismo , Escherichia coli/genética , Proteínas de Fluorescência Verde , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Microscopia Confocal , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
14.
Cancer Res ; 64(3): 795-800, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14871801

RESUMO

hCDC4, the gene that encodes the F-box protein responsible for targeting cyclin E for ubiquitin-mediated proteolysis, has been found to be mutated in a number of primary cancers and cancer-derived cell lines. We have observed that functional inactivation of hCDC4 does not necessarily correlate with elevated levels of cyclin E in tumors. Here we show, however, that hCDC4 mutation in primary tumors correlates strongly with loss of cell cycle regulation of cyclin E. Similarly, a breast carcinoma-derived cell line mutated for hCDC4 exhibits cell cycle deregulation of cyclin E, but periodic expression is restored by reintroducing hCDC4 via retroviral transduction. Conversely, small interfering RNA-mediated silencing of hCdc4 deregulates cyclin E with respect to the cell cycle. These results indicate that hCdc4 function is an absolute prerequisite for cell cycle regulation of cyclin E levels, and loss of hCdc4 function is sufficient to deregulate cyclin E.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ciclo Celular/genética , Ciclo Celular/fisiologia , Ciclina E/fisiologia , Proteínas F-Box/genética , Mutação , Ubiquitina-Proteína Ligases/genética , Neoplasias da Mama/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Ciclina E/biossíntese , Ciclina E/genética , Proteína 7 com Repetições F-Box-WD , Regulação Neoplásica da Expressão Gênica/genética , Humanos , RNA Interferente Pequeno/genética , Retroviridae/genética , Transdução Genética
15.
EMBO J ; 21(23): 6515-26, 2002 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-12456658

RESUMO

Cdh1p is a substrate-specific subunit of the anaphase-promoting complex (APC/C), which functions as an E3 ubiquitin ligase to degrade the mitotic cyclin Clb2p and other substrates during the G(1) phase of the cell cycle. Cdh1p is phosphorylated and thereby inactivated at the G(1)/S transition predominantly by Cdc28p-Clb5p. Here we show that Cdh1p is nuclear during the G(1) phase of the cell cycle, but redistributes to the cytoplasm between S phase and the end of mitosis. Nuclear export of Cdh1p is regulated by phosphorylation and requires active Cdc28p kinase. Cdh1p binds to the importin Pse1p and the exportin Msn5p, which is necessary and sufficient to promote efficient export of Cdh1p in vivo. Although msn5delta cells are viable, they are sensitive to Cdh1p overexpression. Likewise, a mutant form of Cdh1p, which is constitutively nuclear, prevents accumulation of Clb2p and leads to cell cycle arrest when overexpressed in wild-type cells. Taken together, these results suggest that phosphorylation-dependent nuclear export of Cdh1p by Msn5p contributes to efficient inactivation of APC/C(Cdh1).


Assuntos
Ciclo Celular/fisiologia , Núcleo Celular/metabolismo , Carioferinas , Ligases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase , Transporte Ativo do Núcleo Celular , Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Transporte/metabolismo , Proteínas Cdc20 , Proteínas Cdh1 , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recuperação de Fluorescência Após Fotodegradação
16.
Curr Biol ; 12(19): 1698-703, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12361575

RESUMO

Scaffold proteins play a major role in regulating MAP kinase pathways. In yeast, the Mpk1p-MAP kinase pathway functions to maintain the integrity of the cytoskeleton and the cell wall. In this module, the MEKK Bck1p functions upstream of the MEKs Mkk1p and Mkk2p, which in turn activate the MAP kinase Mpk1p. Mpk1p regulates several nuclear targets, including the transcription factors Rlm1p and SBF, and the two HMG1-like proteins NHP6A and NHP6B. Here we show that Mpk1p constitutively shuttles between the nucleus and the cytoplasm, and both Mpk1p and Mkk1p localize to sites of polarized growth in a Spa2p-dependent manner. Spa2p belongs to a group of proteins that includes Bni1p, Bud6p, and Pea2p, which are involved in the dynamic organization of the actin cytoskeleton during polarized growth. FRAP analysis shows that Spa2p-GFP is stably anchored at bud tips, whereas Mpk1p binds transiently. Spa2p interacts with Mkk1p and Mpk1p, and membrane bound Spa2p is sufficient to recruit Mkk1p and Mpk1p but not other MAP kinases to the cell cortex. Taken together, these results suggest that Spa2p functions as a scaffold-like protein for the cell wall integrity pathway during polarized growth.


Assuntos
Polaridade Celular , Proteínas Quinases Ativadas por Mitógeno , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Divisão Celular , Membrana Celular/metabolismo , Proteínas do Citoesqueleto , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases , Ligação Proteica , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais
17.
Curr Biol ; 12(2): R53-5, 2002 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-11818078

RESUMO

Scaffold proteins organize many MAP kinase pathways by interacting with several components of these cascades. Recent studies suggest that scaffold proteins provide local activation platforms that contribute to signal specificity by insulating different MAP kinase pathways.


Assuntos
Sistema de Sinalização das MAP Quinases , Transdução de Sinais , Retroalimentação , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...